Introduction

s not easy to keep track of the rates of birth, death
d reproduction of a large number of individuals, It is
n more difficult to predict how a change in any one
these parameters, such as increased mortality, will
ct the population in the future, because this will
nd on numerous interactions within and among
cies, often against a backdrop of year-to-year vari-
lity in the environment. Indeed, fishery scientists
e the additional problem of studying animals that
usually visible only when they have been brought
t the side of a ship! Yet understanding the popula-
1 biology of fished species is essential to meet one of
main objectives of fishery science, that of maximiz-
yields to fisheries while safeguarding the long-term
lity of populations and ecosystems (Chapter 1).

he aim of this chapter is to provide a brief overview
lingle-species stock assessment. ‘Brief’ is certainly
inderstatement, given that many books are devoted
narily to this subject, including specialist volumes
ant to particular taxa or regions. For derivations
methods introduced in this chapter we parti-
recommend Hilborn and Walters (1992) and
in and Deriso (1999). Fisheries science is a quan-
tive subject, so students should be prepared to
brace the minimal mathematics included here. We
e put much of this in separate boxes and point out
references for those who want more detail.

. Balancing birth and death

itionally, the Holy Grail in fisheries science was to
'the maximum sustainable yield (MSY), the largest
hes that can be taken over the long-term without
sing the population to collapse. From a strictly bio-
cal point of view, this makes sense. However, this is
10 means the only objective of fishery management,

Single-species stock assessment

and it may ignore the goals of the fishers themselves,
who are often more concerned with employment and
maximizing profit from the catch (Chapters 1, 6 and
11). Even if the objective is to maximize yield, precau-
tion suggests managers should aim for yields below the
theoretical MSY (section 7.3). In the meantime, MSY is
a good starting point for understanding the biology of
exploitation.

For a given level of fishing mortality to be sustain-
able, there must be a balance between the mortality,
which reduces population biomass, and reproduction
and growth, which increase it (Russell, 1931; Fig. 7.1).
Mortality and reproduction are not entirely independ-
ent, but fluctuate within limits set by abiotic factors
such as weather, and biotic factors such as competition
and predation (Begon et al., 1996a; Chapter 4). The
balance that is struck through biotic factors is due to
density dependence, the relationship between population
density and per capita birth, growth or death (Fig. 7.2).
Density dependence gives populations the resilience
required to sustain elevated mortality from fisheries.

Reproduction Growth

L

Population Biomass

L

Fishing
mortality

Natural
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Fig. 7.1 Population biomass depends on growth, reproduction,
natural mortality and fishing mortality.
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Fig. 7.2 Density dependence in per capita rates of birth and
death. At the equilibrium (*) these processes balance one
another.

7.3 Surplus production models

Surplus production models are used to search for the
largest fishing mortality rates that can be offset by
increased population growth, normally measured as
changes in population biomass per unit time. They are
a good starting point because they capture the basic logic
of density dependence, and the simplest ones can be
thought of as ‘null models’ that underlie the theory of
sustainable exploitation for terrestrial as well as aquatic
organisms (Milner-Gulland & Mace, 1998; Reynolds
et al., 2001). Surplus production models use data that
have been aggregated to some extent across age classes.
These models appear in the literature under several
aliases, including production models, stock production
models, surplus yield models or biomass dynamic models.

Suppose that a population grows in a classical logis-
tic (sigmoid) fashion, beginning slowly at first and then
reaching a maximum rate of increase, before slowing
down again as it reaches maximum total biomass, B,
(Fig. 7.3a). The maximum biomass of the population
is traditionally said to occur at the carrying capacity
of the environment, although many fish populations
fluctuate so wildly that it is easier to deal with this con-
cept in theory than in practice (Chapter 4). The slow-
down in population growth at high densities would be
due to density-dependent processes such as competi-
tion for resources, cannibalism or the spread of disease
(section 4.2.4). The impact of density dependence can
be seen most clearly by plotting the rate of change of
the total population biomass against total population
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Fig. 7.3 (a) Logistic population growth. (b) Populations grow
most quickly at intermediate sizes up ro a maximum total
biomass, B__ . (¢) The maximum sustainable yield (MSY)in
biomass occurs ar a level of fishing mortality that places the
population at an intermediate size.

biomass (Fig. 7.3b). The rate of population growth
shows the ‘surplus’ yield available to a fishery (Fig. 7.
and so the maximum sustainable yield (MSY) is fo
at the highest point on this curve.

7.3.1 Stability

We have now found MSY on a surplus yield curve,
in the real world MSY is a very small target ind
Furthermore, it is a moving target, due to tem
changes in the productivity of the ocean and the fishes
that can be supported (Chapter 2). Before we dise
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stant biomass caught. (b) Constant
artions of biomass caught.

(b)

of finding MSY using real data, we must consider
happens when we miss the target, because this is
able; our population estimates will never be per-
jor will enforcement of quotas (catch controls,
17.2.2) or other restrictions be sufficiently exact
ea direct hit on MSY. The yield curves in Fig. 7.4
sond to those shown in Fig. 7.3 with arrows
o indicate stability of various carch rates.

consider the case where a constant biomass is
(Fig. 7.4a). Suppose that this fixed quota had
t too high (above MSY—‘high quota’ in Fig.
or all population sizes, yield would exceed the
production so the population would be driven
tion. Now consider the case where MSY is esti-
erfectly, and the quota is equal to MSY. The
e population depends on whether it is initially
below B, .. If the population is larger than
will stabilize at B,,qy. This is due to density
ce (i.e. initial productivity will be less than
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mortality), and as it is fished the population will
decrease until production and mortality balance. How-
ever, if the population is initially smaller than By, the
surplus production will always be less than the quota
and the population will go extinct. What if the quota is
too low (‘low quota’ in Fig. 7.4a)? If the population
is larger than B,y a stable equilibrium will be reached,
though the yield to the fishery will be less than at MSY
because density dependence reduces productivity. If
the population is smaller than By, the equilibrium
is unstable and the population will either increase to
the equilibrium point at the higher population size or
crash. This consideration of stability conditions shows
that one should never try to exploit populations at the
MSY using constant catch rates: any reduction of the
population below the theoretical point for maximum
yield will crash the population. If a constant number of
individuals is removed from the population, the MSY
equilibrium is not stable.
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The situation is better if we exploit at levels that are
in proportion to the size of the population (Fig. 7.4b).
For example, a fixed percentage of the population
might be caught (Y = pB), where Y is the yield (biomass
caught) and p is the proportion of population biomass,
B. Here, perturbations of the population in either direc-
tion from the MSY point will be followed by a return to
the equilibrium as long as the quota crosses the yield
curve. For example, if the population is larger than
Byssy» the quota will exceed MSY and the population
will be driven downwards to a stable equilibrium.
Similarly, if the population biomass is less than By,
the quota will be less than the surplus production that
results from a release from density dependence in small
populations. The population biomass will therefore
increase to a stable equilibrium with the quota. Bur we
are not out of the water yet!

7.3.2 Models of population growth

We derived the dome-shaped production model
(Fig. 7.3) from a function that describes the growth
rate of the population according to population size.
The general form for continuous time is:

dB

—=g(B)-Y

7|
B (7.1)

where Bis the exploitable population biomass at time ¢,
g(B) is the surplus production as a function of bio-
mass, and Y is the yield to the fishery (in biomass). In
words, the rate of change with time in the population
biomass is equal to the surplus production minus the
yield to the fishery. The equation we used in Fig. 7.3 for
g(B) will be familiar to population biologists as the
classical logistic equation of population growth. It is
usually called a Schaefer curve by fisheries biologists,
after Schaefer (1954) who used it to develop a math-
ematical basis for fitting surplus production models.
This equation expresses the change in the biomass of
the population with time:

|

where r is the intrinsic rate of population increase,
i.e. the difference in biomass between per capita birth
and death rates in the absence of density dependence,
and B, is the maximum biomass of individuals that
the population can contain, i.e. the so-called carrying

B

g(B)= rB1:1 = (7.2)

max

capacity. In a fished population the yield, Y, is sub-
tracted from the right-hand term (as in equation 7.1). At
equilibrium, where density-dependence compensates for
the additional mortality from exploitation, dB/dt =0,
andg(B) =Y.

The Fox curve is an alternative to the Schaefer
(i.e. logistic) model of population growth (Fox, 1970).
It is often used, because it may be more appropriate
for biomass measurements than the logistic equation
which is traditionally used in other contexts for num-
bers of individuals:

& ity IEE (7.3)
dt log,B,..

Here the inflection point corresponding to that i
Fig. 7.3(a) occurs at less than half of the maximu
theoretical population size, and so the maximum popu
lation growth rate and MSY are also to the left of t
logistic cases shown in Figs 7.3(b) and 7.3(c).

A third alternative is the Pella-Tomlinson m
(Pella & Tomlinson, 1969). This function has a para
meter, 7, added to the Schaefer logistic model, such t

r Bm

(7.
max

If 11 = 2 this equation is identical to Schaefer’s origi
equation. When m < 2 the production model produ
a maximum toward the left, and when m >2
maximum is toward the right. This Pella~Tomlin
approach allows for flexibility in the shape of prod
tion curves.

7.3.3 Fitting models to data

The choice of production curves is actually the least
our worries. More serious is the second phase of
procedure, namely how to fit these models to real d
to estimate MSY and the level of fishing effort at whi
it occurs. As we shall see, failure to do this properly
been implicated in the most dramatic stock collapse
the history of fishing. '
The methods of fitting these models rely on the ass
tion that an index of abundance (such as comme;
catch rates) can be related to true abundance, e.g.

(

where [, is the index of relative abundance at i
(usually measured in years), B, is the populati



biomass art time ¢, and q is the catchability coefficient
(section 10.2.4). The latter term relates the catch per
unit effort (CPUE) to population biomass:

\CPUE = gB (7.6)

It is important to remember that catchability will
change with improvements in technology and in re-
sponse to changes in the distribution and behaviour of
the population (sections 4.3 and 10.2.4).

Techniques for model fitting fall under two main
categories, equilibrium methods and non-equilibrium
ethods. The latter can be further subdivided into
ess-error or observation-error methods.

quilibrium methods

quilibrium methods are often used to fit the Schaefer
odel, but they can be applied to the other models
0. Schaefer (1954) developed a method for estimating
SY and the level of fishing effort at which MSY is
hieved £, ¢y, based on catch and effort data. The basic
a is to make the very dangerous assumption that
h year’s catch and effort data represent an equilib-
m (or steady-state) situation, where the catch is
al to the surplus production at that level of fishing
. Effort might be measured as the number of boats
8 per year, or number of traps baited per year or
ber of person-days spent spear fishing. CPUE is
regressed against effort over a series of years, pro-
g a negative relationship (high fishing effort yields
CPUE). In part, this negative relationship may be
n by the fact that both the independent and the
ndent variables contain fishing effort, providing
correlation even where none exists! This problem
ith tanding, with a little mathematical juggling,
arameters from this regression can be used to fit
niliar dome-shaped production curve.
equilibrium method depends critically on the
ption that historical catch rates are in equilib-
with the population (Hilborn & Walters, 1992).
sumption is dangerous because temporal changes
JE will rarely be a sole reflection of density-
ent responses of the population to fishing
ty. Rather, CPUE reflects ongoing reductions in
g stock, because fishing effort often increases
year as a fishery develops. Consider the
the orange roughy, Hosplostethus atlanticus
hthyidae) fishery off north-western New Zealand
). This fishery built up rapidly until declining
es precipitated a considerable reduction in the
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Fig. 7.5 Changes in fishing effort over time for an orange
roughy fishery at the Challenger Plateau, New Zealand. The
fishery first developed in 1981. After Field & Clark (1996,
unpublished data).

total allowable catch in 1989-90 (Field & Clark, 1996).
In this case, it would have been wrong to assume
that the yield in any one year resulted from density-
dependent responses bringing the population into equi-
librium with high rates of fishing mortality, especially
for a species like the roughy which does not reach matu-
rity until it is over 20 years old. Instead, this fishery was
mining the population, and the time series of CPUE
data could not be used with any confidence. For this
reason, the researchers stayed well clear of the equi-
librium assumption and employed more sophisticated
methods. Many fisheries take ‘one-way trips’ toward
increased effort over time, and the result is that stocks
are given credit for greater resiliency than they deserve.

Non-equilibrium methods

Process-error methods first transform the production
curves into linear forms, and then use multiple regres-
sion to fit the models to data (Walters & Hilborn, 1976;
Schnute, 1977). Catch and effort data are still used,
but without the assumption that the population is in
equilibrium. As with all statistical fitting techniques,
the parameters in the fitted equation depend on the
assumption made about the ways in which errors are
distributed in the data. Process-error methods assume
that catch and effort data have been measured without
error, and all error is attributed to the functional rela-
tionship between population growth rate and popula-
tion size (Hilborn & Walters, 1992; Polacheck et al.,
1993; Quinn & Deriso, 1999). That is, we assume error
in equation 7.1 rather than 7.5. With this assumption,
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multiple linear regression is used to estimate the para-
meters of the production curve. In the case of a Schaefer
max (€quation 7.2) and
the catchability coefficient, g, to relate catch per unit

curve, this means estimating r, B

effort to population biomass. This method depends on
having good variation (contrast) in the time series of
catch and effort data. Otherwise, the estimates can go
seriously astray.

Observation-error methods assume that the under-
lying production relationship is correct, and that all the
error occurs in the relationship between true stock size
and the index used to measure it (Pella & Tomlinson,
1969). Formally, this is the opposite of the process-
error method above, because now the error is assumed
to be in equation 7.5 rather than in equation 7.1. The
time series for stock sizes is estimated by making an initial
estimate of stock biomass. Then the model is used to
predict stock sizes for the rest of the time period. One
then compares observed and expected population sizes
or catches, and uses statistical methods to adjust the
parameter values to minimize the difference between
the observed and expected values. For the Schaefer
curve one thus estimates the same three parameters as
with the regression methods, as well as the initial stock
biomass. The latter might be the same as B, if the
time series extends back to the start of the fishery. This
technique is reviewed by Hilborn and Walters (1992),
Polacheck et al. (1993), and Quinn and Deriso (1999).
Again, the quality of the estimates depends greatly on
the quality of the data. We return to a direct compari-
son of the performance of the three methods for fitting
models to data after we see one of them in action.

7.3.4 Surplus production models in action

Of the three methods discussed, the classical equilib-
rium method has the longest and most sordid history,
principally because it presided over the infamous col-
lapse of the Peruvian anchovy Engraulis ringens. This
fish accounted for > 25% of global marine landings
in 1970 (Fig. 1.4; section 4.2.2). It is instructive and
sobering to see the disastrous consequences of the equi-
librium assumption before we move on to a direct com-
parison of its performance with the other two methods.

The Peruvian anchovy population is found in the
Peru Coastal Current, which runs close the shore of
Peru and northern Chile. Anchovy are pelagic fishes,
filtering chains of phytoplankton as well as zooplank-

ton, fish eggs and fish larvae from the water. Spawning
peaks in September and October, with a smaller sec-
ondary peak in February and March (Laws, 1997). The
young grow rapidly and recruit to the fishery when they
are about 5 months old and 8-10 ¢m in length. They
spawn at age 1 year and may live for 4 years. Most

anchovy are caught by Peruvian purse-seiners, and con-
verted to fishmeal to be sold to foreign countries for use
in animal feeds. In the 1970s, the fishery accounted for
about a quarter of Peru’s foreign revenues.

Figure 7.6(a) shows the relationship between CPUE
and effort in the anchovy fishery. The parameters from
this relationship were used to fit the production curve
in Fig. 7.6(b), using Schaefer’s equilibrium method.
The data include estimates of the biomass taken by
seabirds, some 18% of the human catch. You may not
be impressed with the extrapolation on the right side o
the curve! Such is the nature of the parameter fitting
technique, which allows extrapolation well into the
unknown, for those brave enough to make the journey.
The curve indicates a potential MSY of about 11 mil
lion tonnes. After subtracting an average of 1.5 million
tonnes for seabirds, this leaves about 9.5 million tonne
for the fishery. It was reassuring to see that since the
mid-1960s, the fishery’s effort was about right for tak-
ing this yield. This was no accident since, in 1965, t
Peruvian government brought in regulations that lime
ited annual catches to 7.5 million tonnes. However,
it proved difficult to enforce the regulations becaus
the fishing fleets and fishmeal processing plants wer
greatly overcapitalized and, by 1970, the annual targe
of 7.5 million tonnes could have been processed in les
than 40 days (Laws, 1997). Thus, there were conside
able economic pressures for catches to exceed limits,

In January-February 1972 a research vessel s
recorded unusually low numbers of juvenile anchov
At the same time, oceanographers recorded an intn
sion of warm tropical water off the Peruvian coast. Th
soon developed into a full-blown El Nifio event (sectig
2.3.2). The adult fish relocated to pockets of cool wa
and tended to move south. Adults were easy to catch
large numbers during March and April, but catd
soon declined markedly. By July the earlier hints of
recruitment developed into loud alarms. Faced w
this double blow of declining catches and failed rec
ment, a management panel recommended a halt to
commercial fishery until they were sure that recruitmy
from the current cohort of adults proved success
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ome fishing was allowed in the southern part
fishery in November, because the adult stock
reasonably healthy there. But this was false
he stock collapsed and the fishery failed. The
put fishers out of work, left processing plants
d led to serious economic and social problems
Moreover, many of the seabirds that once fed
nichovy starved and died. The anchovy stock
ecover quickly after this collapse, contrary to
for a stock with a high intrinsic rate of natural
tead, it fluctuated at low abundance, suf-
m the continuing effects of an overcapitalized
ind further moderate El Nifos in 1976, 1982~
187. In the 1990s, however, the stock finally
ze, and anchovy vields now exceed those of
fished species (Fig. 1.4, Table 3.3).

ent of production models

ther two techniques for fitting production
ss-error’ and ‘observation-error’ methods)
"u better? Polacheck et al. (1993) made a

Total effort (millions of GRT trips)

direct comparison between all three methods by using
them with three data sets from very different fisheries.
Each method was used to fit the Schaefer form of the
surplus production function (equation 7.2) to these
data. Figure 7.7 shows that in two cases the equilibr-
ium method was the most optimistic, with a process-
error method being marginally more optimistic for
one species, the New Zealand rock lobster Jasus
edwardsii. A hint that the classical equilibrium method
is too optimistic is illustrated by the data for the South
Atlantic albacore Thunnus alalunga (Scombridae).
This method predicted an MSY of just over 28 000
tonnes, which would be caught at fishing effort of just
over 100 million hours (Fig. 7.7a). The fishery has been
under this in most years, yet CPUE declined steadily
over the period to only 30% of its initial value, The
overfished state of this fishery is better predicted by
the observation-error method, which proved to be the
most conservative in all three cases. The highly over-
optimistic predictions of the equilibrium method for
Namibian hake (Fig. 7.7c) illustrate the problems
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mentioned in section 7.3.3 for the orange roughy (Fig.
7.5): in the early years of the hake fishery some of the
‘surplus’ production estimated by the equilibrium
method included removal of some of the initial stand-
ing stock (Butterworth & Andrew, 1984).

Monte Carlo simulations were used by Polacheck et

al. (1993) to compare the performance of the pr
error and observation-error techniques. These a
noise to the catch rates as predicted by the model
how each technique handled it in terms of bias and
cision. The observation-error method performed
with the process-error method proving very impn



The authors concluded that ‘under no circumstances
should agency staff, conference organizers, reviewers,
managers or journal editors accept assessments or pub-
lications that are based on (equilibrium) or process-
error estimators only’.

General lessons about production curves and MSY
Several lessons have been learned the hard way about
the use of production curves and MSY, particularly
from traditional methods that rely on the equilibrium
assumption. First, fisheries are rarely in equilibrium.
The build-up of the Peruvian anchovy fishery in the
early 1960s is typical (Fig. 1.4). Such build-ups render
atch and effort data much less informative about
nsity-dependent changes in population growth than
hey appear. Second, everything we know about marine
cology suggests that stability is the exception rather
an the rule (Chapters 2 and 4). In the case of the
ovy fishery, the El Nino had a catastrophic effect
p the productivity of the anchovy stock. Third, catch
d effort data are difficult to work with because
PUE is affected by advances in fishing technology
d changes in the behaviour of the quarry, both of
hich are difficult to account for. Thus, the tendency
the anchovy to concentrate in pockets of cool water
owed fishers to maintain high catch rates despite
eo reductions in total stock size. Fourth, production
es suggest that the surest way to find the optimal
ng effort is to overfish the population, so that a pre-
ed drop in yield at high effort is clearly discernible!
ractice, overfishing often happens because fishers
attempting to earn a livelihood by competing for
on resource (Chapters 6 and 11), but this leads
bervasive ratchet mechanism of resource exploi-
, whereby it is much easier to allow effort to
ase than to bring in regulations that decrease it. So,
time we find out where yields drop with high
o mortality, it will probably be too late to restrict
hery. Finally, we must remember that surplus
ction models pool the various processes that
gine population productivity. For some fisheries
ay not be good enough. For example, in most
s fishes larger/older individuals will contribute
ortionately to reproduction, and they are often
aluable per kilogram. Yet their greater percent-
tribution to the catch is ignored by surplus pro-
imodels.
¢ carly experiences such as the Peruvian
collapse gave production models a bad name,

Delay-difference models 135

it would be wrong to paint them all with the same
brush. The more sophisticated production models des-
cribed are considerable improvements over equilibrium
methods, and can outperform some of the more com-
plex approaches presented later in this chapter (Punt,
1992). Furthermore, most methods of parameter fit-
ting do not rely on complicated computer models and
expensive fisheries data. Thus, they can provide useful
guidance in fisheries where there are insufficient re-
sources for time-consuming and costly research vessel
surveys and analyses of age structure and growth rate.
As we will see, the more auxiliary data that are avail-
able, the more sophisticated the model that can be used.

7.4 Delay-difference models

Delay—difference models, also known as Deriso/
Schnute models, are surplus production models in the
sense that data are aggregated over most age classes.
But this technique goes further, by using not only popu-
lation biomass data from previous years, but also incor-
porating information concerning instantaneous rates
of natural mortality, body growth and recruitment
(Deriso, 1980; Schnute, 1985; Fournier & Doonan,
1987). Thus, the approach is intermediate between the
simple methods based on relative abundance, catch and
effort data described above, and fully age-structured
models such as the statistical catch-at-age and yield-
per-recruit methods described in sections 7.6 and 7.7.
Delay—difference models are so named because they
allow for a time delay between spawning and recruit-
ment, and they use difference equations, in which time
changes in discrete steps (as opposed to differential
equations, where time is continuous). The basic ap-
proach is to build a population model out of submodels
that can describe survival, body growth and recruit-
ment next year. Thus, the surviving biomass next year
is predicted from the surviving biomass from last year,
adjusted for body growth, plus next year’s recruitment.
Delay—difference models assume “knife-edge’ maturity
and vulnerability to fishing (i.e. all individuals reach
maturity at the same age and become equally vulner-
able to fishing at the same age, sections 9.3.1 and
9.3.4), and that natural mortality is constant with age.
The simplest delay—difference model, which dates
back to Allen (1963) and Clark (1976), is derived in
Box 7.1.
The Allen-Clark model has only two components,
survival and recruitment. Modern models add a thi
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Box 7.1
The Allen-Clark delay-difference model.

The following treatment, which follows Quinn and Deriso
(1999), excludes stability conditions and generalizations to
other models. First, we derive the equilibrium population
size, and then add fishing. The adult population abundance
nextyear, N,,,, is the sum of the number of survivors this
year, plus recruitment next year. Thus,

Ny = [N+ DN, ) (1

Bl

where /,is the annual survival against natural sources of
mortality and D represents a stock-recruitment function,
applied to adults backdated to the time of hatching b
years ago. Note that this assumes that /is the same
for all recruits. We can use whatever function seems
appropriate to express recruitment according to
population size, such as a '‘Beverton-Holt' curve or
a ‘Ricker’ curve (section 4.2.1).

The equilibrium population size, N., is given by

Ne= DiN=)

2 .l s Jri {2)

Equation 2 meets the condition that there should be a
balance between natural mortality (1 - /), and recruitment:
if mortality is high, recruitment must be high too, thereby
offsetting these losses. This concept is developed further
in section 7.8,

Now we can add fishing. Let:

S,=N,-C, 3)

where S, is the number of adults that escape from the
fishery and C, is the number of adults caught. Equation 1
becomes

Ny = 1S+ DIS,; ) (4)

This means that the number of individuals next year will
be the sum of adults that have escaped both fishing and
natural mortality, plus recruitment. Note the assumption
that fishing occurs in a single pulse at the start of the year
and that there is only natural mortality for the remainder.
We can use this equation to find the maximum
sustainable yield with respect to optimal escapement
from the fishery. Since C,= N, - S, (equation 3),

MSY = maximum (with respect to S} of Nu = §
= maximum (with respect to S) of IS+ D{S) - S

At this point the population is not changing in size. There-
fore, the first derivative of [IS+ D(S) — S] with respectto §
will be equal to zero. This is solved to give

dDiS,)
das

1-1/

In other words, the MSY occurs at the value of optimal
escapement, S, where the rate of change in recruitment
is equal to the rate of natural mortality. Clark (1976) gives
conditions for determining whether this equilibrium point
is stable.

As an example, Clark (1976) used this model for
Antarctic fin whales Balaenoptera physalus. This required
a stock-recruitment function for equation 4. Clark used the
following equation, with rrepresenting the intrinsic rate of

population increase and N, ,, as the maximum number of

ax

individuals that the population can contain:

3 j|
Nmax

The parameters were r=0.12, N,

man

DtS:-:rS{h

=600 000, and

/= 0.96. When these are used in equation 2, the result
is solved to calculate the equilibrium population size in the
absence of fishing:

1-1
1___}
;

=400 000.

Ne=N

max

MSY is found by solving equation 5 to find the optimal
escapement:

{1- 25'“}:14
Nmax

S, =200 000 whales

While this is an elegant example of a simple delay-
difference model, the predicted optimal escapement
seems quite low, and depends critically on the paramet
used for life histories and maximum population sizes, as
well as the form of the stock-recruitment relationship.




component, body growth, which is applied to both
those animals that had already been born, as well as
new recruits. Thus, we now model next year’s biomass,
B,,,, rather than just the number of individuals. A full
derivation of this technique has been carried out by
nute (1985), and the approach has been reviewed
)y Hilborn and Walters (1992) and Quinn and Deriso
1999). The method assumes that both fishing and
atural mortality are constant for all individuals after
cruitment. As before (Box 7.1), recruitment is mod-
d by whatever stock-recruitment relationship best
sthe data (section 4.2.1).

The incorporation of fundamental life-history and
ruitment information makes it possible to obtain
0d fits of the model to relative abundance data (e.g.
or survey information). However, good fits may
achieved by several different combinations of growth,
ality and recruitment parameters. It is therefore
ortant to pin down as many parameters as possible
prehand, using auxiliary information on life histor-
other similar stocks, and so on. A good technique

oing this formally involves Bayesian inference (sec-
7.9.1).

| Delay-difference models in action

lay-difference model was used by Collie and
rs (1991) to calculate potential equilibrium yields
cks of the yellowtail founder Limanda ferruginea
pnectidae), a commercially important flatfish
exploited in coastal waters from southern New

England to the Grand Banks of Newfoundland. This
species generally recruits to the fishery at 1-2 years of
age in the southern part of their range, and 45 years in
the north. Catches from several stocks of this species
have followed a roller coaster pattern, rising rapidly
during the late 1960s, dropping equally rapidly in the
1970s, and rising again in the early 1980s. These
changes have roughly followed population abundance.

Collie and Walters (1991) assumed a natural survival
value of 0.82. The authors set proportions of fish
recruiting at each age according to findings from previ-
ous studies, and used commercial CPUE as their main
index of population abundance, supported by research
vessel surveys. They converted CPUE to population
biomass using equation 7.6 and used weight at age data
to determine growth parameters. Recruitment para-
meters were calculated by fitting a Ricker curve to
spawner and recruit abundance data.

The resulting delay-difference model provided a
good fit to the CPUE data, as shown for the Grand
Banks stock (Fig. 7.8). However, the authors noted that
the parameters had large confidence limits, and many
different combinations of parameters could achieve
this fit. Thus, equally good fits could be obtained if
the population were small but productive or large but
unproductive. The importance of this became clear
when they looked at the predicted equilibrium yields
for the Grand Banks fishery for different values of para-
meter a, the density-independent parameter from the
Ricker spawner—recruit relationship (equation 4.2, sec-
tion 4.2.1). Recall that higher values of a indicate that

Survey data
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Table 7.1 Annual equilibrium yields (thousands of tonnes)
from a delay-difference model for Grand Banks yellowtail
flounder. The data show different combinations of potential
exploitation rates and values of @ from Ricker spawner-
recruitment functions. The bold type shows the highest yields
for each value of a. From Collie and Walters (1991).

Ricker a value

Exploitation — = =
rate (%) 0.0 0.3 0.6 0.9 1.2

20 14.7 13.5 12.7 13.4 16.8
30 16.6 16.8 16.8 18.5 23.7
40 13.6 17.0 18.9 22.1 29.6
50 2.4 12.0 17.6 23.5 33.8
60 0.0 0.0 9.9 20.1 34.2
70 0.0 0.0 0.0 5.4 24.8

the gradient of the spawner—recruit curve is steeper at
the origin (more recruits per spawner) and that the
curve will be more domed. As Table 7.1 shows, the
more domed the spawner-recruit relationship, the
higher the equilibrium yields will be.

This example thus illustrates that the benefits of the
excellent fit that can be achieved by delay—difference
models may come with a cost of considerable uncer-
tainty about management recommendations if the
parameters are uncertain. In particular, as with the
other surplus production models presented above,
time-series data must be handled cautiously when used
to make inferences about population dynamics. Results
such as those in Table 7.1 can show the model’s
sensitivity to parameter uncertainty, and point toward
auxiliary information that should be collected to
solve the problem. Many scientists now prefer to take
advantage of advances in computing power to use fully
age-structured models rather than the two age groups
represented by delay—difference models.

7.5 Virtual population analysis

Virtual population analysis (VPA) uses commercial
catch data to calculate stock sizes and mortality rates
of age-based or length-based cohorts. VPA does not by
itself indicate how many individuals can be caught to
meet a given objective, nor does it predict the future. In
fact, it explains the past. For, if we know the historical
age structure of a population, we can then see the
consequences of changes in mortality rates, based on

Natural mortality
input initially

Number of fish

Catch input
«each year

=Survivors
estimated initial

t-2 t-1 t

Year
Fig. 7.9 Virtual population analysis for a fish with three age
cohorts, Beginning with the current year, ¢, we can rebuild the
historical stock sizes by adding the numbers that were caught

by the fishery or that died from natural causes to the numbers
of survivors.

methods such as yield-per-recruit calculations (secti
7.7). Our use of the term VPA is equivalent to sequ
tial population assessment as reviewed along wi
other age-structured models by Megrey (1989).

If we know how many fish from a given cohort wi
caught one year, we have a minimum estimate of h
many must have been alive the previous year. If we
natural mortality, we have the total mortality for ¢
year and the total number that must have been alive
year before. One can then work backwards, year
year, deriving annual estimates of numbers of survi
and mortality rates. With a good picture of past
present population dynamics, one can then make
forecasts needed to assess management options.
fisheries targeting particularly short-lived species, t
calculations can be done on a shorter time scale su
months rather than years, provided that the catch
age or length-cohort data are collected on that time

The basis of VPA is illustrated in Fig. 7.9. For a g
cohort (year class) this year, we calculate the nu
that must have been alive the previous year by ad
the number caught by the fishery this year to the n
ber estimated to have died of natural causes over
same period. First, we adopt a standard formulati
population biology to account for both natural
fishing mortality, which we call the exponential
equation (Box 7.2):
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Box 7.2
Equations of death.

Suppose we wish 1o follow the survival of a cohort (year
class) though time. The number of individuals alive at any
time tin the future will be a function of the number alive
now, minus mortality. If we call the initial population size

N, then the number alive one time unit later, N, will be
given by the exponential decay equation:

N,., = Ne-Fi (1)

By convention, the symbol Fis used to denote the

. instantaneous rate of fishing mortality. (Note the capital
letter, to distinguish it from ffor fishing effort.) Mis the
. instantaneous rate of natural mortality and e is the base
of the natural logarithm (e = 2.71828). Thus, the total
mortality is given by £ + M, which, again by convention
in fisheries, is denoted Z,

An example of how the number of individuals alive in
the future depends on instantaneous rates of mortality is
shown in Fig. B7.2.1.

We can use equation 1 to calculate the rate of change in
numbers alive with time. This is simply the first derivative
the equation:

1000

800

Time, t

B7.2.1 Death of a cohort: number alive over time,
ee levels of instantaneous total mortality (Z).

aN

— = -FN - MN

= (2)
We can also use equation 1 to calculate the number of
individuals caught by the fishery. First we calculate the
number of fish that die. This is the difference between N,
and N, i.e.

deaths=N, -N,e? =N (1-&7) (3)

The number of individuals caught over that time is the
proportion of deaths due to fishing mortality:
F
C,==N(1-e9). 4
[ (4)
This is referred to as the catch equation, with 7= F+ M.
For example, suppose we start with 1000 fish, and they
die from fishing at the instantaneous rate of martality
F=0.5, and from natural causes M= 0.1 per year. How
many will be alive after 4 years? The exponential decay
equation 1 can be generalized to

N, =Ng (5)
where N, is the number alive initially. Therefore
N, = 1000654 = g1 fish,

How many fish were caught by the fishery in the first
year? From the catch equation 4 we calculate the
proportion of mortality due to fishing:

05 i
C=|=—|1000(1 - e
[0.6] 00001 - e™%)

C=2376fish

Similarly, 75 fish died of natural causes, producing a total
first year's mortality of 451. This total could, of course,
also have been calculated by putting Z= 0.6 into the
exponential decay equation 1 and subtracting the result
from 1000.

'e-{h,“] (77}

' 1 is the number of individuals alive at time
is the number alive at time £, M is the instant-
ate of natural mortality, and F is the instant-
te of fishing mortality. We will be seeing a lot

of this equation in this chapter, and we describe ways of
estimating natural mortality in section 9.3.6.

We also calculate the numbers caught at time ¢, C,
from fishing mortality and natural mortality at time

t using the catch equation, which is also derived in
Box 7.2.
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N; {1 _ E’_H:'+M‘I}

F
C= +’M (7.8)

' 'Ff 3
When catch is multiplied by the mean weight of indi-
viduals, and summed over age classes, we have the total
yield in biomass to the fishery.

Todoa VPA, we use the exponential decay and catch
equations 7.7 and 7.8. Here we illustrate the concept
by following one cohort backwards through time, and
hence use only one subscript, ¢, although it is customary
to add a second subscript to denote age, in order to keep
track of multiple cohorts.

Step 1. Calculate the ‘terminal abundance’ (i.e. for
the most recent year, ) of the oldest cohort from
the catch equation 7.8, rearranged ro give N,. Use an
estimate of terminal F,, as well as M, which is assumed
constant for all ages in all years.

C

t

N=— "t
(EIZ)(1-e %)

t

(7.9)

Step 2. Calculate the previous year’s fishing mortality
for the cohort by substituting equation 7.7 into the
catch equation 7.8. The previous year is now ¢:

F
C =—*L " e“(l-e % ), hence
L] ZI L]
F
C,==LN, % -1) (7.10)
14 Z: [
We can substitute for Z, = F, + M to get
F
C=—i—N  (ftM_y) 7
t F; +M t+l { 1“

Since we know the catch, C,, the stock size from step 1,
N,,;, and M, F, is the only unknown in equation 7.11.
Unfortunately, equation 7.11 cannot be solved for
F, directly, but it can be solved numerically with a
computer,

Step 3. For the younger ages, calculate N, again, by
inserting F, (as calculated in Step 2) into an appropriate
modification of equation 7.7, That is,

N,=N,,.'i*™ (7.12)

After using equation 7.9 to calculate the number of
oldest individuals, we work back year by year, using
equation 7.11 for fishing mortality and equation 7.12

for abundance, as shown schemarically in Fig. 7.9. A
worked example of a VPA is given in Box 7.3.

Although VPA estimates of annual fishing mortality
and population size depend on the initial estimates for
the most recent year, their proportional dependence
on these becomes smaller as one works backwards
through time. This gives greater confidence in estim-
ates from earlier years, which can be fine-tuned as
new population estimates are generated each year. As
a rule of thumb, the method works best when F/Z is
between 0.5 and 1.0,

For the most recent years, where estimates of F and
population size cannot benefit from much hindsigh
the use of ‘tuning fleets’ is important to infer popula-
tion numbers at age (Pope & Shepherd, 1985). Thus,
although VPA in theory does not require fishing effort
dara, in practice it is hard to get away without i
Tuning fleets may be research vessels making regula
surveys, or commercial fleets where fishing activity hz
been well quantified over a number of years. For exam
ple, we might know the total number of days fishing pe
year for a fleet of beam trawlers using a certain mesl

size in a certain region over a 10-year period. If w
know how mesh size or engine power have changed, v
can also correct the data to account for this. Then, y
can plot historical population numbers, based on VP,
against effort by our tuning fleets in those years.
relationship can be used to predict very recent pop
tion numbers from recent tuning fleet catches 2
effort. If the tuning fleet predictions are far off the VI
predictions, a closer look at the dara would be wi
ranted. Some VPA software, such as extended surviv
analysis (XSA) used routinely in European fisheries,
options for ‘tuning’ the VPA according to these flee
Thus XSA can weight different fleets to account for
efficiency with which they target different age classe

7.5.1 Age-based cohort analysis

A clever approximation of virtual population ang
was developed by Pope (1972). Within limits, this g
very similar results to VPA, without the need for it
ive calculations of fishing mortality, F. Thus, nut
ical solutions are unnecessary. As with VPA,
catch data and initial guesstimates of F and M to
backwards through time to reconstruct previous¥
of F and stock structure. However, Pope’s ing
was to simplify the calculations by assuming th
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Box 7.3
Example of virtual population analysis.

Table B7.3.1

Age (t) Catch numbers Stock size  Fishing mortality (F)
1 70 487 0.172

2 90 335 0.349

3 80 194 0.600

Table B7.3.1 shows catches through time for a cohort of
fish. We assume that M = 0.2 and is constant for all ages.
Of course in reality M will vary, but the smaller it is relative
to F, the less impaortant this is. We begin with the oldest
fish, aged 3, and set the terminal value of F; = 0.6.

Step 1. From equation 7.9, the stock size of age 3 fish
that would have yielded a catch of 80 will be:

&5

P RIZ)N - &)

B 80
{0.6/0.8)(1 - e728)

=194 fish

Step 2. From equation 7.11 we can calculate the value
of Fthat must have occurred the previous year to yield the
catch of 90 age 2 fish while leaving 194 survivors.

C, '

o 2 Nin-»M_.ql
Vi ‘

F
90 = 194 —2—(e"*0%_)

£ +02

F,=0349

{solved by iteration: a simple approach is to insert the
right-hand side of the equation into a spreadsheet and
have Fin the equation refer to a column in which values of
F vary up and down).

Step 3. We use this value of Fwith equation 7.12 to
calculate the stock size for age 2 fish.

- (F,+M)
N,=N,e"
= 194 g0349+02

= 335 fish (depending on rounding)

We repeat Steps 2 and 3 to work backwards through
time.

taken instantaneously halfway through the year,
than continuously (Fig. 7.10). Thus, the number
alive at the moment just before fishing mortality
) will be solely a function of natural mortality act-
the cohort since the start of the year. Then fishing
the stock all at once, producing the entire year’s
C,), followed again by natural mortality.

number of fish alive just before fishing takes
.0.5) will be the number alive at the start of the
), reduced by half of the year’s natural mortal-

N, M2 (7.13)

entire year’s catch (C) is taken instantane-
are left with

-C, (7.14)

fish suffer natural mortality for the rest of
leaving the number alive at the end of the year

- — Nl‘
«~— Due to natural mortality
«— Nisos

+«—— C; due to fishing
mortality

Due to natural
+—— mortality

Number of fish

'_Nr+f

t t+0.5
Year

t+1

Fig. 7.10 Age-based cohort analysis. The logic is the same as for
virtual population analysis (Fig. 7.9), but the year is broken into
two parts, with the catch assumed to have occurred instantly in
the middle of the year.
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Box 7.4
Example of age-based cohort analysis.

Table B7.4.1 shows the same catches at age as for our
VPA example (Box 7.3), with a comparison between the
VPA results and cohort analyses, calculated below. As
before, we take M = 0.2, and our initial estimate of Ffor
the terminal age class (3-year-olds) as 0.6.

Step 1. The first step is identical to the VPA calculation,
i.e. we calculate the number of age 3 fish, N, from the
rearranged catch equation 7.9, to give:

N, = 194 fish

Step 2. The difference from VPAis that this is
substituted into equation 7.16 as N, to calculate the
number of fish from that cohort that would have been
alive the previous year:

N, = (N;eM2 + C,)eM?
=(194e°27 + 90)" %2
= 336 fish

This is only one fish away from our calculation of 335
using VPA (Box 7.3).

Step 3. Now we calculate Fon age 2 fish, using the
exponential decay equation (equation 1in Box 7.2)

_ —IFI, M}
Nr+1 T Nr'9

This is rearranged to give:

N,
£ = In[—'} -M
Nt+1

Thus, Ffor age 2 fish is given by:

= In[@} -0.2
194

=0.349

This is identical to the VPA result, or within about 0.002 of
it, depending on rounding. Note that, unlike VPA, we have
circumvented the iterative calculation of F. We continue
waorking our way back through time repeating Steps 2 and
3 to build up the historical pattern of age-based stock sizes
and fishing mortalities each year. When we perform Steps
2 and 3 again to calculate stock sizes and fishing mortality
on age 1 fish, the results are also virtually identical to the
VPA analyses shown in the table.

Table B7.4.1

Stock size Fishing mortality (F)
Age (t) Catch numbers VPA Cohort VPA Cohort
1 70 487 488 0.172 0.173
2 90 335 336 0.349 0.349
3 80 194 194 0.600 0.600
N,,; = (N,e M2 — C,)e~ M (7.15) ber alive at the start of the following year. The ca

Since we are trying to find the number of fish alive at the
start of the year, we rearrange this equation to give the
fundamental equation:

N, =(N,,, eM2+C,)eM? (7.16)

This gives the number of fish alive at the start of the
year based on the catch through the year and the num-

estimated in the usual way, from the fishery, an
can use whatever means are available to estima
(section 9.3.6) and take an initial assumption a
which generally proves fairly unimportant to the
result, as for the case of VPA. A worked example o
based cohort analysis is presented in Box 7.4.

Pope (1972) showed that this method approxi
VPA quite well for values of M as high as 0.3 an



high as 1.3. If M and F are larger, then the method still
works if the catch times are divided into smaller units
than 1 year. One can also substitute M/(1 —e™) for
e™2, which gives an even better approximation to
VPA, especially for larger values of M (MacCall, 1986b).

15.2 Length-based cohort analysis

ength-based cohort analysis was developed for species
that cannot be aged. The principle is the same as for
age-based cohort analysis, but animals are separated
into length classes (Jones, 1981). The technique can be
mplemented by statistical packages such as FiSAT,
eveloped by the Fisheries and Agriculture Organiza-
on (FAO) Fisheries Department and the International
senter for Living Aquatic Resources Management
ICLARM).

First, length groups are converted to age groups
ased on the von Bertalanffy growth equation (sections
4.2 and 9.3.3). Thus,

1 L
)=t, - —log | 1-—L
0 K ge[ Lm

here t( L, ) is the age of individuals in length interval L,.
K and L_ are parameters of the von Bertalanffy
owth equation (section 9.3.3). Thus, the time interval,
, between two successive age classes, t(L,) - #(L,),

(7.17)

e &
-L

-—Iog|: '] (7.18)

fundamental equation from age-based cohort
llysis (equation 7.16) is modified to replace the time
erval (assumed to be 1 year) with the converted age
M2 is replaced with a term
esenting the fraction of a given length class that sur-

rvals. That is, the term e

natural mortality from the time they are in L, until
of the time period has elapsed before they reach L,:

MI2K 4 C T  MRK
BIN, T, , M2ZK+C, T, (7.19)
: NL1 is the number of individuals that survive to
length L, corresponding to an age #(L,), Croi,
number of individuals between lengths L, and L,

are caught, and f ] 1, Fepresents the fraction from
tion 7.18:
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The procedure for carrying out a length-based cohort
analysis is similar to the age-based approach. First,
we modify the age-based form of the catch equation
(Box 7.2) for use with length classes, and apply it to the
oldest length class:

F

Cp i, ==N,(1-e2¥)

7 (7.20)

0, because the-
oretically, the age corresponding to At being larger than
the largest length class is infinite. We thus substitute
zero for e 4

For the oldest age class we take ¢ =

, plug the catch numbers for the largest
length class into the left-hand side of equation 7.20,
and make an initial guess of the terminal value of F/Z
to calculate the N, the number of individuals in the
oldest length class. An example is shown in Box 7.5.

Once we have calculared the stock sizes correspond-
ing to each length interval, we can calculate fishing
mortality rates. The basic formula is:

FIZ
1-F/2Z

(7.21)

where Fand Z refer to length class L |,L,. F/Z is derived
from catches and stock numbers, i.e.

. Cra

= 7.22
Z N -N el

The final step is to convert numbers in each length class
to actual numbers in the stock. However, we cannor do
this until we know how long each individual spends
in each time interval and sum across the intervals. The
mean number of individuals in each age class per year is
calculated as:

N =N,

1 .= 7ot (7.23)

Thus, the toral is the sum across each length class, i,
weighted by its time interval:

Z(N:.,,:,,.“—"‘-

i

(7.24)

As with age-based cohort analysis, this method
requires an initial estimate of mortality (F/Z), but the
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Box 7.5
Length-based cohort analysis for a hypothetical
species.

Suppose the following data apply to a fished species: L_ =
120 cm, K=0.3, M= 0.2, and F/Zis initially guessed to be
0.8. Therefore M/2K = 0.2/(2 x 0.3} = 0.33. The sizes of
individuals in the last two length classes, the numbers
caught, and their corresponding values of Tare shown in
Table B7.5.1.

Applying the length-based catch equation (equation
7.20) to the oldest age class:

Cioo. = 25 = 0.8(N,g0)(1 - 0)

Nigo=31.2

Working backwards to the next largest length class using
the fundamental length-based cohort equation 7.19:

Ngp = (31.2x 1,593+ 30)1.6%3% = 751

To calculate Ffrom these data, we apply equations 7.22
and 7.21. Thus, for the length category 90-100 cm,

FlZ=30/75.1 -31.2) =0.683

F=10.2x0.683)/(1 - 0.683) = 0.43

Length group (cm) Number caught T
L-L, {:Lp‘-?

90-100 30

100-ce 25 -

(L,-LAL,-L,)
(120-90)/(120-100) = 1.50

Table B7.5.1

calculations for older year classes do not rely heavily on
the initial input. However, it is still important to estim-
ate M and the growth parameters as well as possible.

7.6 Statistical catch-at-age methods

Statistical catch-at-age methods, also known as stock
synthesis, or integrated analysis, are an alternative to
VPA for estimating stock sizes. As their name suggests,
these techniques are age based, which places them with
age-based VPA and cohort analyses into the family
of age-structured stock assessment methods. They are
used routinely in many stock assessments. The basic
idea is to develop a population dynamics model from
first principles and then relate the model’s predictions
(e.g. of the annual catches) to the observed data.
Statistical methods are used to find the best set of model
parameters that will fit the observations. This is an
extremely flexible approach. It also provides a way of
overcoming a problem with VPA (section 7.5), namely
that abundance estimates for the most recent year
classes tend to be imprecise and require ‘tuning’.
Furthermore, most modern catch-at-age methods do
not require estimates of M that are needed for VPA.
One disadvantage of catch-at-age methods is that the

computational procedures are considerably more @
plex than those required for VPA. Thus, the estima
of parameters requires non-linear regression, wi
effectively precludes the use of computer spreadsh
In the following, we collapse a great deal of d
into a snapshot of the method. The historical rog
the approach, which includes catch curve anal
and developments by Doubleday (1976), Paloh
(1980), Fournier and Archibald (1982), and Deri
al. (1985), are reviewed by Deriso et al. (1985), Mi
(1989}, and Quinn and Deriso (1999). These refer
should be consulted by anyone wanting more th:
brief overview we provide below.

A well-known early example of a statistical caf
age model is called CAGEAN (Cartch-AGE An
Deriso et al., 1985). The model uses the same
equation and exponential decay equation th
encountered in Box 7.2 and used for VPA. Rath
beginning with fishing mortality on the terminal
age class, CAGEAN estimates the annual recrui
and the numbers-at-age in the first year of the a
To simplify the estimation, it is assumed that
separable fishing mortality. That is, fishing m
can be described by the product of an age-de
vulnerability to the fishery, and a year-specifie
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e values for these parameters are obtained by fit-
ting the model to the observed data. CAGEAN can use
catch-at-age and fishing effort data, and place con-
straints on the extent to which recruitment deviates
from a pre-specified spawner—recruit relationship. We
define a function based on the weighted sum of squared
deviations between the model’s predictions and the
pbserved data. Non-linear least-squares regression is
ised to minimize these deviations to find the best fit
parameters. In contrast to VPA, CAGEAN does not
ssume that catches are known exactly. For catch-at-
ge data, the sum of squares term is given by:

8Q(catch) =Y ¥ [predicted C, , —observed C, , |2

a t

(7.25)

ere C_ , is the catch of animals age a during year ¢.
e predicted catches are based on the catch equation
nd the exponential decay equation (Box 7.2).

e basic approach can be extended in many ways.
example, Smith and Punt (1998) assess a stock of
mfish Rexea soladri (Gempylidae, close relatives of
Trichiuridae) off eastern Australia for which catch-
e data are missing from some vyears, although
igth-frequency data are available for most years. The
derlying model is sex- as well as age-structured and
of the parameters are therefore sex specific, to
yture the impact of sexual dimorphism.

e statistical approach used by statistical catch-at-
‘models to estimate parameters is an improvement
r the ad hoc approach used by VPA. Furthermore,
‘need not guess at terminal fishing mortalities,
ious authors (e.g. Deriso et al., 1985) have devel-
d methods for quantifying the uncertainty sur-
nding key model outputs such as the time series of
wner and recruit abundance. Incorporation of aux-
y information such as fishing effort or independent
ates of natural mortality are very helpful for estim-
g the parameters needed to fit models to catch
. Indeed, the flexibility of this technique for accom-
ting such additional information is a major asset.
pnents of VPA-related techniques such as cohort
sis counter thar these methods are computation-
simpler and more transparent, with a solid track
d in many well-studied fisheries.

Yield-per-recruit models

beginning of this chapter we identified four

factors influencing population biomass that must be in
balance if we are to exploit sustainably: reproduction,
body growth, fishing mortality and natural mortality
(see Fig. 7.1). We also saw that surplus production
models lump these together and ignore age structure.
Models that keep the components separate fall under
the ‘dynamic pool” approach. With the information
provided by analyses such as VPA and statistical catch-
at-age analyses, we can use yield-per-recruit models to
seek fishing mortality rates that achieve the best trade-
off between the sizes of individuals caught, and the
number of individuals available for capture. If fishing
mortality rates are set too high, too many individuals
will be taken before they have had a chance to grow.
This is loosely termed ‘growth overfishing’. If fishing
mortality is too low, although the individuals will be
large when captured, the total yield will be low. This
logic can be seen if we follow the fate of a single cohort
through time (Fig. 7.11). The optimal age at which to
capture these fish is A.

The fundamental yield-per-recruit model assumes
a steady state, i.e. that recruitment is constant, and
hence the age structure of the population is the same as
we would see if we followed a single cohort through
time. Hence, yield is measured ‘per recruit’ (Beverton
& Holr, 1957). We will therefore need to incorporate
recruitment in a later section of this chapter. The model
also assumes that fishing and natural mortality are con-
stant from the moment that the fish become vulnerable
to fishing gear. We can actually relax these assumptions
when yield-per-recruit models are put into practice
to see the effects of different ages at first capture and
exploitation patterns, thereby informing decisions for
management. Obviously, fishers will want to catch the
largest total biomass rather than the largest vield per
recruit, We keep track of total biomass later, by multi-
plying yield per recruit by the projected numbers of
recruits, given various potential rates of fishing mortality.

The fundamental yield-per-recruit model gives the
yield, Y (in biomass) to the fishery as:

Y=Y ™EN,WV, (7.26)

wherez andt

imum ages of cohorts, respectively, F is the instant-

are the ages of first capture and max-

aneous rate of fishing mortality, N is the number of
individuals alive, and W is their mean weight. Strictly,
the summation sign should be an integral, since age is a
continuous variable. However, age is usually recorded
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Fig. 7.11 The logic of yield-per-recruit models, based on the
trade-off between growth and mortality of individuals. Here,
the optimal age at which to catch the fish is at A.

in discrete categories (e.g. 1-year-olds, 2-year-olds, and
so-on), so the weights of individuals caught in each age
class can be simply added rtogether.

Box 7.6 provides a worksheet for calculating yield
per recruit for a single cohort of fish. This shows that if
F=0.6, about 1 kg of fish would be caught for every
fish that initially recruited to the fishery. The total
biomass of fish left behind in the sea would be abour 2.4
kg. We usually want to find the value of F that meets
some objective such as providing a high yield to the
fishery, while maintaining the stock at a reasonable
size. Thus, we repeat the calculations for a range of

fishing mortalities, and plot yield per recruit and popu-
lation biomass per recruit vs. F (Fig. 7.12). The maxi-
=0.23. If current F

mum yield per recruitoccursat F

were 0.9, then a reduction in fishing mortality to F
would nearly double the yields and increase the stock
size fivefold. The latter would give us a better safety
margin against recruitment failure, as shown by the
population biomass per recruit. For species with high
M, yield-per-recruit curves are often much more fla
topped than in our example, which is typical
relatively slow-growing species such as cod. If curves
are very flat-topped, practitioners are forced to rely on
targets other than maximum values of these curve
(section 7.10).

It would be unrealistic to expect M and F to b
constant with age, since younger fish tend to suffe
high natural mortality, but low fishing mortality
they are large enough to become vulnerable to fishin
gears. Yield-per-recruit analyses can accommodate ag
specific mortalities. Indeed, researchers often inves
igate the effects of changing mesh size by setting F
for the youngest age classes of fish (‘knife-edged sele
tion’). This allows exploration of the joint effects
changing age at capture and mean F.

Long-term forecasts from yield-per-recruit mode
typically assume a stable age structure through tim
This may often be unrealistic, given the erratic te
poral changes in recruitment typical of most f
stocks (Chapter 4). Indeed, yield-per-recruit mod
by themselves ignore impacts of fishing mortality:
recruitment: this requires an explicit link to a st
recruitment curve (section 7.8). Moreover, errors if
may have important effects on the predictions when
is high relative to F. Temporal variation in M an
are also ignored, as is density dependence in gro
and maturity, which may change with different leve
fishing morrality.

7.7.1 Yield-per-recruit models in action

Atlantic croaker Micropogonias undulatus are
bers of the family Sciaenidae, known as
Croakers are named after the noises they make d
the spawning season. They are one of the most ab
ant inshore bottom fishes along the east coast 0
United States, including the Gulf of Mexico.
also one of the most important species for comm
and recreational fisheries. Croakers spend the au
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Box 7.6
Example of yield-per-recruit calculations for a
single cohort of fish.

Table B7.6.1 follows the fate of a single cohort of fish.
The weights are of individuals at each age. The number
alive is at the start of the year per 100 fish recruiting,
based on an assumed natural mortality (M) of 0.2, and a
hypothetical fishing mortality (F) of 0.6. The numbers

alive and catch numbers at the end of the year are
based on the exponential decay equation and the catch
equation, respectively (Box 7.2). The population biomass
is calculated as (weight x number surviving) and catch
weights (yields) are (weight x catch numbers).

These calculations are repeated for a range of potential
fishing mortalities, yielding the data in Table B7.6.2, which
are plotted in Fig. 7.12.

Table B7.6.1

Age Weight Number  Population  Catch Catch
(years) (kg) alive biomass (kg) numbers  weight (kg)
1 0.6 100 60 41 25
2 0.9 45 40 19 17
3 2.1 20 42 8 17
4 4.1 9 37 4 15
5 6.3 4 26 2 11
6 8.4 2 15 1 -]
7 10.0 1 8 0.3 3
8 11.2 0.4 4 0.2 2
9 12.6 0.2 2 0.1 1
10 13.5 0.1 1 0.0 0
Sum (kg) 237 98
Sum/Recruit (kg) 2.37 0.98
B7.6.2
Fishing mortality Yield per recruit (kg) Biomass per recruit (kg)
(F) (Y/R) (B/R)
0.0 0 21.46
0.1 1.12 12.94
0.2 1.36 8.27
0.3 1.32 5.60
0.4 1.2 4.00
0.5 1.08 3.01
0.6 0.98 2.37
0.7 0.89 1.93
0.8 0.83 1.63
0.9 0.77 1.42
1.0 0.73 1.26

r in oceanic waters. They spawn from July
mber along the US east coast, probably on
ental shelf edge. In spring, adults as well as
juveniles move into estuaries, where they

remain until early autumn. Most individuals reach
maturity at 1 year of age.

Atlantic croaker are caught by haul-seines, pound
nets and gill nets (Chittenden, 1991). Once they move
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offshore they are caught by otter trawl and gill-net
fisheries. Commercial landings have fluctuated drast-
ically over the past 60 years, ranging from 20 000
tonnes from 1937 to 1940, to 29 000 tonnes in 1945,
and plunging to less than 1000 tonnes from 1967 to
1971 before recovering to 13 000 tonnes in 1977 and
1978 (Barbieri et al., 1997). There has been a decline
since 1987, and recreational catches peaked in 1991
when approximately 21 million fish were caught.
Barbieri et al. (1997) used a yield-per-recruit model
to investigate whether mortality was too high in two
Atlantic croaker fisheries, and to make recommenda-
tions about the effects of reduced mortality on young
fish through bycatch reduction devices and minimum
size limits. Figure 7.13 shows the predicted effects of
various values of F and mean age at first capture, #_,
on yield per recruit. Two fisheries are shown, each
simulated twice—once with M = 0.20, and once with
M =0.35, to cover the probable range of the true
value of M, which is uncertain. In lower Chesapeake
Bay (Fig. 7.13a, b), analyses of landings showed that
the current value of £_is 2 years of age. Surprisingly, it
appears that a reduced age at first capture might actu-
ally increase yields, but this might be a risky strategy for
a small benefit. The relationship with F is flat-topped
for all ages of first capture. Total mortality Z (= F + M),
is thought to be about 0.6. However, the breakdown
between F and M is unclear. If M = 0.20 (Fig. 7.13a), F

M =0.2 (see Box 7.6).

would be 0.4, which is below but near the maximum
If M =0.35 (Fig. 7.13b), F would be 0.25, and ther
is more room for higher yields with increasing F.

The situation is quite different for the Nort
Carolina fishery (Fig. 7.13c, d). Here, Z is much highel
at 1.3. If M is low, reducing the age at first capt
would be a bad idea. Indeed, the mean age at first ca
ture, which is 1 year in this fishery, should be increas
considerably. This is not so important if M is high (Fj
7.13d). Note how much more peaked the yield-pe
recruit surface is if M is low than if M is high. F is estin
ated to be either 1.1 if M is low, or 0.75 if M is high.
either case, this stock appears to be overexploited.

Since there was no indication of growth overfishi
in Chesapeake Bay, Barbieri et al. (1997) suggested th
that fishery should be regulated at the status quo un
estimates of current mortality rates are improved.
contrast, the North Carolina fishery needed a hi
mean age at first capture and lower fishing mortali
The authors noted that the differences may ac
reflect the fact that the North Carolina data came fr
1979 to 1981, whereas the Chesapeake Bay data ca
from 1988 to 1991, The early period coincided with
occurrence of unusually large fish. Whether the dif
ences between the Chesapeake Bay and North Caro
fisheries reflect temporal or spatial patterns, this st
shows that it is important to be careful about gener
ing from one fishery to another.
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8 Incorporating recruitment

e discussed recruitment briefly in section 7.4.1, but
gely ignored it in our discussion of yield-per-recruit
dels. This is risky when recruitment is related to
wning stock size (Chapter 4). Thus, while yield-
-recruit models handle ‘growth overfishing” very
gantly, they need to be integrated with recruitment
e are to avoid ‘recruitment overfishing’, which is
ined as a reduction in spawning stock biomass to the
it where recruitment is impaired.

he simplest way to incorporate recruitment is to
sider semelparous species with a life span of 1 year.
se species, such as squid, spawn once and then die
tion 3.4.3). Each year’s fishery consists entirely of
year’s recruitment, and the stocks are not buffered
nultiple year classes, nor by small individuals that
temporarily safe from the fishery (e.g. Rosenberg
,1990; Basson et al., 1996). Here, spawner—recruit
fonships must be used to find a target for escape-
: the number of fish allowed to survive (Pauly,
j; Beddington et al., 1990). If recruitment is plotted
st spawning stock size over a number of years, we
what level of recruitment would be needed to
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maintain the population in the face of fishing mortality.
The higher the mortality, the higher the recruitment has
to be for the population to be in equilibrium.

7.8.1 Replacement lines

Replacement lines help us to understand how changes
in F affect the recruitment rates of exploited stocks.
The theory of replacement lines was first developed
by fishery scientists (Beverton & Holt, 1957), burt has
since been applied to other studies of population dyna-
mics. As an example, we have chosen a Ricker spawner-
recruit curve (Fig. 7.14). First, consider Fig. 7.14(a),
with a diagonal line that has a slope of 1.0, showing the
replacement level where recruitment balances spawn-
ing stock size. We can predict the trajectory of a popu-
lation from any starting stock size by following from a
point on the x-axis to the recruitment curve, and then
taking this as the next generation to be plotted again
on the x-axis, following up to the recruitment curve,
and so-on. This is equivalent to reflecting the recruit-
ment back to the spawning stock size in the following
generation through the one-to-one replacement line.
In Fig. 7.14(a), the population will approach a stable
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Fig. 7.14 Population trajectories for a Ricker spawner—
recruitment relationship. (a) The replacement line intersects
the spawner-recruit curve, leading to a stable equilibrium.
(b) The replacement line corresponding to higher fishing

pressure exceeds the spawner—recruit curve, leading to a
population collapse.

equilibrium, oscillating above and below it as it does
so. In Fig. 7.14(b), a steeper replacement line has been
drawn, to accommodate higher fishing mortality. Here,
recruitment is not high enough to sustain the popula-
tion, and it will crash.

Replacement lines can be used to predict the sustain-
ability of fisheries if the slope of the replacement line
is adjusted according to the level of fishing mortality
(Shepherd, 1982). A doubling of mortality, for example,
will result in a doubling of the slope of recruitment
needed to replace the stock (if patterns of growth and
maturation are constant). Yields can also be predicted,
thereby building a useful bridge to methods such as
yield-per-recruit models, which otherwise ignore impacts
of fishing mortality, F, on future recruitment (section
7.7). Recall from section 4.2.1 (equation 4.3) the flex-

ible Shepherd spawner-recruit relationship that relates
the abundance of spawners (§) to that of recruits (R).
This can also be written as:

a$

R=—2
1+ (SIb)° &

where a is the slope of the curve at the origin (maximum
R/S at low stock sizes), b is the biomass at which
recruitment is reduced to half the level it would have
been under density independence only, and ¢ control§
the degree to which the spawner-recruit curve is
asymptotic or dome shaped. If stock size § is measured
as stock biomass B, we can substitute B for S and rear:
range the equation to estimate B (Shepherd, 1982):

B=b(aB/R —1)" (7.28

equation 7.28 contains biomass per recruit (B/R
which we can calculate using yield-per-recruit models
(section 7.4). We can also translate B/R into recruit
ment as R = B/(B/R). Finally, if we know recruitment
we can calculate yield based on yield per recruit as Y=
R(Y/R). This concept is shown graphically in Fig. 7.15,
Fig. 7.15(a) and (d) are the standard outputs from
yield-per-recruit model, showing the effect of differen
values of fishing mortality on population biomass pe
recruit and yield per recruit, respectively. Fig. 7.15(c
shows the relationship between recruitment an
stock sizes (e.g. based on observations over a numb
of years). The replacement line has been added t
Fig. 7.15(c) for a trial value of fishing mortality (F,,
by giving it a slope that is the inverse of B/R for F_,
using the translation step shown in Fig. 7.15(b). Equi
ibrium stock size is found where this line crosses th
function relating recruits to population biomass. This
multiplied by yield per recruit to give the total yiel
(Fig. 7.15e).

7.8.2 Replacement lines in action

The concepts discussed above are illustrated for
North Sea cod Gadus morbua stock in Fig. 7.16. Int
study, Cook et al. (1997) fitted a Shepherd spawne
recruit curve to data for 1963-94. The worrying resi
is that the spawner-recruit curve is below the repla
ment line. This is especially clear during the early ye
when stock sizes were high. Indeed, as predicted by
theory, this stock has been declining toward the origi
Recruitment exceeded the replacement line in only
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of 31 years. Cook et al. (1997) also fitted Ricker and
Beverton-Holt spawner-recruit curves to the same
data. The values of F at which the population was
predicted to crash were 0.91 (Shepherd), 1.05 (Ricker)
and 1.13 (Beverton-Holt). These were perilously
close to the contemporary estimate of F = 0.91 for that
stock. We appear to be playing Russian roulette with
the whims of recruitment. As we go to press, a major
re-building programme is being proposed for this
stock.

7.9 Confronting risk and uncertainty

There is uncertainty in most fisheries data. The values
used for population size, commercial catches, natural
mortality and fishing mortality are all estimates rather
than true values. Even if we could estimate these per-
fectly, our projections into the future would still be
uncertain. Although these facts are obvious to every-
one, the structure of most decision-making processes
still encourages the production of single ‘best estimates’
by fisheries biologists (Hilborn et al., 1993a; Francis &

Shotton, 1997). This is risky because it involves throw-

ing away information.

Formal decision analyses allow us to face uncertainty

directly. The process can be broken down into five parts
(Hilborn, 1996; Punt & Hilborn, 1997).
1 Identify alternative hypotheses about the state of the
fishery. For example, the population biomass may be
750 000 tonnes or 950 000 tonnes.
2 Determine the relative weight of evidence in support
of cach alternative. For example, the probability of
750 000 tonnes is 0.1 and the probability of 950 000
tonnesis 0.5.

Table 7.2 A decision table to evaluare the consequences of

when multiplied by their probability. After | filborn et al. (1994).

a variety of alternarive catch quoras, given various potential virgin
biomasses, for the New Zealand hoki Macruronus novaezelandiae. Values in parentheses are the probabilities of each virgin bio
cell entries are the ratio of the stock biomass after § years to the virgin biomass, and expectations are means of each of these ratios

3 Identify alternative management actions. For ex:
ample, consider setting the quota to 100 000 tonnes
or 150 000 tonnes.

4 Evaluate the distribution and expected value of each
performance measure, given the management action
and probability of each alternative hypothesis about
the state of the stock. For example, if the biomass is
750 000 tonnes and you set the quota to 100 000
tonnes, you can expect the stock size after 5 years to be
50% of the virgin biomass.

5 Present these results to the decision-makers.

An example of this approach is a decision table for
the New Zealand hoki Macruronus novaezelandiae
(order Gadiformes) fishery in New Zealand (Table
7.2). This table focuses on alternative hypotheses for
virgin stock size, but it could be adapted to whatever
uncertain aspect of the fishery was of interest. The first
row gives alternative potential virgin stock sizes, and
beneath each of these (in parentheses) is the probability
that it is true. We describe how the probabilities are cal-
culated in the next section (7.9.1). Three potential man-
agement actions (in this case quotas) are considered in
the left column. Each cell of the table shows the pre-
dicted outcome of each management action, in terms of
the ratio of stock biomass after § years of exploitation
to the hypothesized virgin biomass. These values a
usually calculated using Monte Carlo simulatio
(reviewed by Punt & Hilborn, 1997). The expected v

ues in the right-most column are the means for t
cells, e.g. 0.66 = (0.51 % 0.099) + (0.63 x 0.465) +.
(0.81 x 0.003). If only the most probable virgin st
size (950 000 tonnes) had been considered, compari
with the mean expectations shows that this would
led to underestimates of the stock sizes after 5 yea

Alternative hypotheses (virgin biomass 10% 1)

750 950 1150
Quota (10° 1) 10.099) (0.465) 0.317)
100 0.51 0.63 0.70
150 0.26 0.45 0.56
200 0.22 0.26 0.42

1350

1550 1750
(0.096) (0.020) (0.003)
0.75 0.78 0.81
0.63 0.69 0.72
0.52 0.59 0.64




xploitation. This is particularly true under the higher
notas, because, for example, the 31.7% chance that
e virgin stock size was actually 1150 000 tonnes
yould have been ignored.

9.1 Bayesian analysis

¥o main approaches have been used to calculate
obabilities of alternative hypotheses being correct:
yesian analyses and resampling methods.

Bayesian analysis provides a way of making proba-
istic inference by combining prior information with
rent information. It is based on Bayes’ theorem,
oped by the Reverend Thomas Bayes in 1763
7.7). The good reverend has reached sainthood in
eyes of many contemporary theorists.

ayesian inference was used to establish the proba-
ies of the alternative hypotheses for virgin stock
nass of the New Zealand hoki (Table 7.2). We will
0 into the mathematics here, but refer readers to
'_ ister et al. (1994), Walters and Ludwig (1994),
and Hilborn (1997), and Francis and Shotton
). Bayesian analysis contains two key elements:
fication of prior distributions of each alternative
thesis, and calculation of the goodness of fir of
ible data ro each of these alternatives.
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The prior distribution summarizes all information
about a parameter, except for the data used in the
likelihood calculations, in the form of a probability
distribution. This information can include previous
experience with other stocks, knowledge about the
behaviour or life history of the animal, and so on.
Specifying these ‘priors’ is not easy, and is sometimes
criticized on the grounds that the final probabilities of
each parameter may be warped by errors in the prior
distribution. But this criticism can be levelled at any
modelling technique to some extent. For example, non-
Bayesian analyses of fish stocks often make a default
assumption that the instantaneous rate of natural mor-
tality, M, is 0.2. Effectively, this is also a specified
‘prior’, although it is not called that in traditional ana-
lyses. In practise, one should check how important
such assumptions are in all analyses, including ones
using Bayes’ Theorem, by running sensitivity analyses
on a range of parameter values. An advantage of
Bayesian analyses is that specification of priors is a for-
mal procedure that cannot be swept under the carpet,
and it can incorporate many kinds of information
simultaneously. The data that can be used in a Bayesian
analysis are exactly the same as those used in non-
Bayesian analysis (e.g. indices of population size, age-
composition data, etc.).

(7.7
es’ Theorem.

jose we wish to calculate the probability that either

o hypotheses, H, and H,, is correct, based on prior
mation and a current observation (R). In its simplest
for discrete parameters, Bayes’ Theorem says that
fobability of H, given the prior information and the

it observation Ris proportional to the product of the
obability of H, and the probability of R, given H,
rds, 1992). In formal notation, the latter is written

). Thus:

= kx P(H,) x PIRIH,) (1)

kis a constant of proportionality, which is the same
milar equation for H,. It is given by

IH,) x P(RIH,) + [P(H,) x P(RIH,)] 2)

For example, suppose you know from experience that 1/3
of lobsters in a population are males and 2/3 are females.
Furthermore, 3/4 of males have large claws and 1/2 of
females have large claws. You trap a lobster that has large
claws. What is the probability that itis a male?

Let H, be that the lobster is a male, so that
P(H,) = Plmale) = 1/3.

Let H, be that the lobster is a female, so that
P(H,) = Plfemale) = 2/3.

Let Rbe the fact that the lobster you have caught has
large claws.

Based on the above prior information, P{R|H,) = 3/4 and
P(RIH,) = 1/2. Therefore, 1/k = (1/3 x 3/4) + (2/3 x 1/2) =
712. Hence, k=12/7. Therefore, PIH,|R) = 12/7 x 1/3 x
3/4 = 3/7. The probability that the large-clawed lobster is a
male is 3/7.
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Fig. 7.17 Probabilities of various potential replacement yields
for the Bering—Chukchi-Beaufort Seas stock of bowhead whales
Balaena mysticetus. After Punt and Hilborn (1997).

The results of a Bayesian analysis are usually summa-
rized by the posterior distributions for quantities of
interest to management. The posterior probability of
some variable is the probability that it is the true value
after accounting for its prior probability and the infor-
mation content of the available dara.

An example of the use of Bayesian methods is pro-
vided by recent assessments of the Western Arctic
population of bowhead whales Balaena mysticetus, con-
ducted by the Scientific Committee of the International
Whaling Commission (IWC). A key output from the

assessment is the current replacement yield (i.e. the
catch that will keep the population of animals aged 1
and older at its current size). This distribution is used
by the IWC to set catch limits for this population. The
assessments were based on an age- and sex-structured
population dynamics model (Punt, 1999) and used data
collected during visual and acoustic surveys off Point
Barrow, Alaska. Various prior distributions were spe-
cified, including the pre-exploitation size of the popula-
tion, the population size at which MSY is achieved, the
age at maturity, and survival rates for adults and juve-
niles (IWC, 1995). The data are not particularly infor-
mative about current replacement (Fig. 7.17). The IWC
based its catch limits on the lower fifth percentile of this

distribution to allow a high probability of some further
recovery.

7.9.2 Resampling methods

An alternative approach to setting probabilities is t¢
use resampling methods such as bootstrapping. These
methods use existing data from the fishery to gener:
ate probabilities for alternative hypotheses. They ar
straightforward and often faster computationally thal
Bayesian analyses, although this advantage is becomin
less important as computers get faster and Bayesial
algorithms improve. It may also be comforting to avo
the formal setting of priors, although it is still importa
to admit the full extent of uncertainty in each paramete

As an example of the resampling approach, we

consider a study of the orange roughy Hoplostethi
atlanticus fishery on the Chatham Rise, east of
Zealand (Francis, 1992). The response that this s
generated, including debate about whether Bayesi
methods would be superior, shows that computation
approaches to risk assessment are still experienci
growing pains (Hilborn et al., 1993b; Francis, 199
Orange roughy are deep-water fish, which aggregate
seamounts such as the Chatham Rise during spawnil
Trawlers target spawning aggregations, and ca
most fish below 750 m from mid-June to mid-Aug
As with the roughy fishery on the Challenger Pla :
(Fig. 7.5), this fishery grew rapidly in the early 19§
and well beyond the sustainable level for a fish:
matures in its mid-20s.

Francis (1992) used a population model
combines yield-per-recruit analysis with life-h
parameters and a Beverton-Holt spawner-rec
tionship to estimate maximum sustainable yiel
management objective of the New Zealand
of Agriculture and Fisheries was to aim for *
constant yield’, defined in this case as two-third:
This required a reduction in the total allowabl
(TAC) toward 7500 tonnes. This was only a qui
the existing TAC for 1989-90 of 28 637 tonne
quickly should these painful cuts be brought in?
economic concerns needed to be weighed against
bability of a collapse. This is where risk analys
in, and embraced the uncertainty in stock assest

Figure 7.18 shows the probability of fishery
within 5 years for alternative rates of TAC y
A collapse was defined as the stock being redug
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7.18 Risk analysis for orange roughy Hoplostethus
inticus on the Chatham Rise, New Zealand. This shows
probability of collapse within § years according to various
of reduction of the total allowable catch toward a targer
500 t y~'. Each line represents a different assumption for
instantaneous rate of natural mortality, M, After Francis

12000 ty™’
9000 ty~'
7000 ty™!

_———

_-77 3000ty
1 1 N 1 L ]

1970 1980 1990 2000 2010 2020

Year

9 Traditional presentation of management advice for

roughy Hoplostethus atlanticus on the Chatham Rise,
land. Each projection of stock biomass from 1990

an instantaneous rate of natural mortality, M of 0.05,

us rates of reduction of the TAC. After Francis (1992).
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point where the TAC was not catchable with a fishing
mortality rate of less than 1.0 per year. The solid line
in Fig. 7.18 was generated with an estimate of natural
mortality, M = 0.05, which is the best guess. If higher
rates of M are assumed, there is greater urgency to
reduce the catch because these suggest that toral mor-
tality must be higher.

Figure 7.19 shows the more traditional way of pre-
senting management advice from a stock assessment.
These forecasts of stock biomass for different rates of
TAC reduction show different management options,
but they do not incorporate uncertainty in natural mor-
tality, survey indices or recruitment. This therefore
does not show the dangerous situation of the fishery
depicted in Fig. 7.18, i.e. a 30-50% chance of collapse
even if the TAC is reduced at the rate of 7000 t y™',
depending on the natural rate of mortality.

In summary, there is little excuse for ignoring
the uncertainty that is inherent in stock assessments.
We have the mathematical underpinnings (e.g. Bayes’
Theorem), and the computational power. Perhaps the
biggest remaining obstacle is a pervasive feeling that
decision-makers can only handle recommendations
based on single point values. This can be an expensive
mindset: during the collapse of the northern cod Gadus
morbua in the north-western Atlantic in the 1980s
there was conflicting information about the state of the
stock, depending on inferences from offshore catches,
inshore catches or government surveys. Yet uncertainty
was filtered during the decision process under the ethos
that ‘one message goes to the minister’ (Harris, 1998).
Unfortunately, the wrong message got through, con-
tributing to the destruction of the fishery and the loss
of 40 000 jobs. An alternative approach, advocated by
Hilborn et al. (1993a), would be to allow decision-
makers to have decision tables such as Table 7.2 and
graphs like Figs 7.17 and 7.18. These could be pre-
sented to them by fishery scientists who could run on-
the-spot scenarios in response to ‘what if® questions
asked by the decision-makers. These could include eco-
nomic as well as biological alternatives. We return to
methods of incorporating uncertainty in bioeconomic
models in Chapter 11.

7.10 Biological reference points

Biological reference points are derived from models
of populations, to serve as benchmarks in making man-
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Table 7.3 Some examples of biological reference points. F = instantaneous fishing mortality; B = spawning stock biomass;
R = recruitment.

Symbol Definition

Fyasy F giving maximum sustainable yield (also called F,))

Fucy F giving maximum consistent yield, i.e. largest long-term yield without reducing population below a predetermined
level, such as 0.2 virgin biomass, with a prespecified probability. May also be given relartive to Fyyy, e.g. (2/3)Fyqy

| . F that would drive the population to extinction

F where total yield or yield per recruit is highest

Fy, F where slope of yield per recruit vs. F is one-tenth of its value near the origin (Fig. 7.20)

Fu F set according to a specific precautionary approach

Fim F set as the highest that is acceptable by some specified criterion

B Fin an equilibrium population where recruitment per spawning stock biomass in 90% of years has been above the
replacement level

F.i F in an equilibrium population where recruitment per spawning stock biomass in half of the years has been above
the replacement level

Fiigh Fin an equilibrium population where recruitment per spawning stock biomass in 10% of years has been above the
replacement level

Foss F that would drive the stock to the lowest observed spawning stock size (LOSS)

Fo F in an equilibrium population where recruitment per spawning stock biomass is x% of the corresponding unfished
population

By B corresponding the maximum sustainable yield

By oss The lowest B ever observed

By, The B limit set as the lowest that is acceptable by some specified criterion

B,, The B set within a precautionary approach

B,o & The B at which the average recruitment is x% of the maximum of the underlying spawner—recruitment relationship

(1993) and Caddy (1998). Some apply specifi
particular kinds of models, and different ones
adopted as either target reference points or as

agement recommendations. Fishing rates that would
give the theoretical MSY were once considered a good
target, but there has been a stampede away from this
objective due to the difficulty of estimating MSY
accurately (section 7.3.1; Punt & Smith, 2001). Indeed,
the FAO’s Code of Conduct and the UN Agreement

reference points (not to be exceeded). For e
production models show that Fy -y (maximum:
sistent yield) is a safer target than Fyy, and F,

on Straddling Fish Stocks and Highly Migratory Fish
Stocks posit MSY as a limit, not a target. Fishing mor-
tality should not exceed the theoretical point at which
MSY would be achieved (Fyy) and stock biomass
should not drop below the MSY level (Byy).

A variety of biological reference points are listed in
Table 7.3. Many of these are reviewed by Smith et al.

definitely a good thing to avoid (Fig. 7.20a).
The yield-per-recruit curve in Fig. 7.20(b)

F,., and Fy,, which are usually reported as limi

targets, respectively, when this modelling techni

used. Fy | is the value of F on the yield-per-recrui
where the slope of yield is one-tenth of its initi
at the origin (Gulland, 1983; Deriso, 1987). F



Yield

1
Fusy

0 Fpcy Ferash

Fishing mortality, F

|
|
|
I
I
I
1
|
I
I
I
I
|
|
|
1

0 Fo
Fishing mortality, F

Fmax

.7.20 Biological reference points. (a) Surplus production

del; (b) yield-per-recruit model. F ; is found by following the
nbered steps indicated: (1) find slope at origin; (2) plot line

th 10% of this slope; (3) find tangent to curve at this slope.

Biological reference points 167

unit increase in F, the yield per recruit will increase by
one-tenth of the amount at which it was first increasing
when F was very low. F,, , will always be less than F__
thereby maintaining the stock at a safer level. Indeed,
F,, also has the very useful practical advantage of
allowing a more precise target than F__ when the
yield-per-recruit curve has a wide flat top, as in the
Atlantic croaker analyses for lower Chesapeake Bay
(Fig. 7.13). For that case, F;, ; was 0.27 and 0.64 assum-
ing low and high values of M, respectively (Barbieri
et al., 1997). Remember that there is no theoretical
underpinning for selecting the value of 0.1 as the per-
centage of initial F.

The study of the pros and cons of various biolo-
gical reference points, including their integration with
socioeconomic objectives, is a hot topic in fisheries.
Reference points are intimately linked to considera-
tions of risk, because they are the targets or limits con-
sidered as acceptable benchmarks to aim for or to avoid
at all costs. We have come a long way from rargeting
MSY using equilibrium production models. But can we
really get away with considering exploitation of one
species at a time, and ignoring interactions among
species? This is the subject of the next chapter.

ary

The aims of stock assessment are to describe the

ion biology of fished species and to find ways of
izing yields to fisheries while safeguarding the
Fterm viability of populations.

or a given level of fishing mortality to be sustainable,

& must be a balance between the forces that reduce
jlation biomass (natural and fishing mortality) and

g that increase it (reproduction and growth).

any quantitative methods have been developed for
acies stock assessment. Fishery scientists who

in stock assessment have made key contributions

) wider understanding of the dynamics of exploited

| populations.

olus production models aggregate production across
es. Equilibrium surplus production methods have

received a bad name because they were based on faulty
assumptions, but modern ‘observation-error' methods are a
considerable improvement and can perform well.

e Delay-difference models are a stepping stone between
production models and fully age-structured models, re-
quiring a minimum of data on body growth and recruitment.
* Virtual population analyses is used to describe age-
specific stock structure. VPA does not by itself indicate
how many individuals can be caught to meet a given
objective, nor does it predict the future.

 Statistical catch-at-age analysis is an extremely

flexible method for estimating stock size. Unlike VPA,
estimates of natural mortality are not required, but one
must be cautious about juggling numerous parameters at
once.

Continwed p. 158
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Summary (Continued)

* Yield-per-recruit models are run using the information
provided by analyses such as VPA or statistical catch-at-
age analyses, to seek fishing mortality rates that achieve
the best trade-off between the sizes of individuals caught,
and the number of individuals available for capture.

* Yield-per-recruit models need to be integrated with
recruitment if recruitment overfishing is to be avoided.

Recruitment overfishing is a reduction in spawning stock
biomass to the point where recruitment is impaired.

* Advances in methods of stock assessment are being
matched by new ways of converting this information into
management advice. These include explicit incorporations
of risk and uncertainty and the use of precautionary
biological reference points.

Further reading

Many books are devoted to single-species stock as-
sessment, and many fisheries laboratories do their
assessments using software that they have developed
or customized. The excellent books by Hilborn and

Walters (1992) and Quinn and Deriso (1999) gi
derailed accounts of stock-assessment methods a
contain many worked examples. They have to be co
sulted if you intend to do your own assessment! Spa
and Venema (1998) provide a clear description of s
assessment methods in tropical fisheries.
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